Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system.

نویسندگان

  • Emerson Crabill
  • Anna Joe
  • Anna Block
  • Jennifer M van Rooyen
  • James R Alfano
چکیده

Plants perceive microorganisms by recognizing microbial molecules known as pathogen-associated molecular patterns (PAMPs) inducing PAMP-triggered immunity (PTI) or by recognizing pathogen effectors inducing effector-triggered immunity (ETI). The hypersensitive response (HR), a programmed cell death response associated with ETI, is known to be inhibited by PTI. Here, we show that PTI-induced HR inhibition is due to direct or indirect restriction of the type III protein secretion system's (T3SS) ability to inject type III effectors (T3Es). We found that the Pseudomonas syringae T3SS was restricted in its ability to inject a T3E-adenylate cyclase (CyaA) injection reporter into PTI-induced tobacco (Nicotiana tabacum) cells. We confirmed this restriction with a direct injection assay that monitored the in planta processing of the AvrRpt2 T3E. Virulent P. syringae strains were able to overcome a PAMP pretreatment in tobacco or Arabidopsis (Arabidopsis thaliana) and continue to inject a T3E-CyaA reporter into host cells. In contrast, ETI-inducing P. syringae strains were unable to overcome PTI-induced injection restriction. A P. syringae pv tomato DC3000 mutant lacking about one-third of its T3E inventory was less capable of injecting into PTI-induced Arabidopsis plant cells, grew poorly in planta, and did not cause disease symptoms. PTI-induced transgenic Arabidopsis expressing the T3E HopAO1 or HopF2 allowed higher amounts of the T3E-CyaA reporter to be injected into plant cells compared to wild-type plants. Our results show that PTI-induced HR inhibition is due to direct or indirect restriction of T3E injection and that T3Es can relieve this restriction by suppressing PTI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ET...

متن کامل

Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 Harpin.

The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and ...

متن کامل

Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1.

Many Gram-negative bacteria use a type III secretion system (T3SS) to establish associations with their hosts. The T3SS is a conduit for direct injection of type-III effector proteins into host cells, where they manipulate the host for the benefit of the infecting bacterium. For plant-associated pathogens, the variations in number and amino acid sequences of type-III effectors, as well as their...

متن کامل

Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.

The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associate...

متن کامل

The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells.

The bacterial plant pathogen Pseudomonas syringae injects effector proteins into plant cells via a type III secretion system (T3SS), which is required for pathogenesis. The protein HrpJ is secreted by P. syringae and is required for a fully functional T3SS. A hrpJ mutant is non-pathogenic and cannot inject effectors into plant cells or secrete the harpin HrpZ1. Here we show that the hrpJ mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 154 1  شماره 

صفحات  -

تاریخ انتشار 2010